Service Placement and Migration
Mobile Edge Clouds

Kin K. Leung
Electrical & Electronic Engineering and Computing Departments
Imperial College
London, UK

www.commsp.ee.ic.ac.uk/~kkleung

Joint work with Shiqiang Wang (IBM), Murtaza Zafer (Nyansa), Rahul Urgaonkar (Amazon), Ting He (Penn State Univ.), Kevin Chan (U.S. Army)
What Is a Cloud?

The NIST definition:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.”

Example cloud-powered applications:
- Google map (map service)
- Dropbox (storage & content sharing)
- YouTube & Netflix (video streaming + encoding/decoding)

Source:
What Is a Mobile Micro-Cloud?

Traditional cloud: Computation at the core (centralized) cloud

Mobile micro-cloud (MMC): Computation distributed across the core, edge & device

Benefits of MMC
• Reduce delay (beneficial for delay-sensitive applications)
• Reduce total communication bandwidth
• More secure due to limited information dissemination
• Increase availability and reliability in dynamic environments

Status Quo
• Commercial proposals (Nokia & IBM in 2013)
• Standardization - ETSI Industry Specification Group (ISG) for Mobile-edge Computing launched Sept. 2014
• Only preliminary research on MMCs exists in the literature
Why Delay Matters?

Source: http://5glab.de
A service (application) contains different connected components.

How to place and execute these components on the physical cloud system?

Goals for service placement decisions
- Minimizing resource consumption
- Load balancing
- Ultimately: Maintain the quality of cloud services

Challenges
- NP-hard in most cases
- User or network dynamics at network edge (unique for the distributed micro-cloud environment)

There are network connections among different servers in the cloud and also between core and micro-clouds.
A Face Recognition Example

- Centralized (core) cloud
 - Face recognition
 - Database
- Backhaul network
- Image processing & Feature extraction
 - MMC 1
 - MMC 2
- Face detection
- User
- Video source
MILP Approach to Offline Placement

Mixed-integer linear program (MILP) formulation

- Given: Resource requirements specified on app. graph
- Objective: Jointly consider total resource consumption and load balancing
- Constraints:
 - Capacity constraints
 - Domain and conflict constraints (e.g. for security)

Example Result

![Application graph](image1)

![Physical graph](image2)

(a) Problem setting
(b) Mapping result

Why is it not ideal?

- The problem is NP-hard (even for simple cases), so the MILP approach gives no performance guarantee
- No straightforward extension to online service arrivals
- No mechanism to handle dynamic network variations
Objective function (not unique)

\[
\min \left\{ \max_{n \in N} \alpha_n \left(\sum_{v \in V} \bar{d}_{v \to n, 1} x_{v \to n} \right) \right.
\]

\[
+ \max_{l = (n_1, n_2) \in L} \beta_l \left(\sum_{e \in E} \frac{f_{e \to (n_1, n_2)} + f_{e \to (n_2, n_1)}}{c_l} \right) \right.
\]

\[
+ \sum_{l = (n_1, n_2) \in L} \beta'_l \sum_{e \in E} \frac{f_{e \to (n_1, n_2)} + f_{e \to (n_2, n_1)}}{c_l} \right\}
\]
How to place **multiple incoming application graphs** onto a physical graph?

Goal: Develop exact and online approximation algorithms
Approach to Online Service Placement

- General Placement Problem is Really Tough
 - Focus on Tree-Structured Application and Physical Graphs
- Develop an Algorithm to Place Linear Application Graph
 - Obtain the optimal mapping (solution) for this special case as a “building blocking”
- Use the Above to Handle Tree Application and Physical Graphs
 - The path from the root to a leave node is a linear sub-graph
 - Allow pre-specified placement for some junction nodes
 - Develop algorithms with polynomial-logarithmic complexity for online placement
Online Placement of Application Graphs

• **Natural for micro-clouds**: Distributed cloud environment with **hierarchical** structure

• Appropriate to consider **tree physical graphs**

• We have obtained **exact and poly-log approximation algorithms** for offline/online service placement with load balancing as objective

Single line application graph	• **Exact algorithm**	• Time complexity: $O(V^2N^2)$
Single/multiple application graphs with fixed placement of junction nodes	• **Online approximation alg.**	$O(V^3N^2)$-time each graph
		$O(\log N)$-competitive (w/o conflict constraints)
Single/multiple application graphs with some unplaced junction nodes	• **Online approximation alg.**	$O(V^3N^2+H)$-time each graph
		$O(\log^{1+H}N)$-competitive (w/o conflict constraints)

Approximation ratio = Worst case cost from algorithm / Optimal cost (OPT)
Competitive ratio = Worst case cost from online algorithm / Offline optimal cost (OPT)

H – maximum number of unplaced junction nodes on any path from the root to a leaf in the application graph
Simulation Results

Maximum resource utilization with **unplaced** junction nodes

![Graph showing maximum resource utilization with various methods and conditions](image-url)
Dynamic Service Placement/Migration

After initial placement, mobile users may move!

Where should I go?

Observation – Migration may be only beneficial in a long term. We need prediction and buffering mechanisms.

Tradeoff:
Migration cost vs. Performance gain after migration
Face Recognition Example

(a) (b)
We have considered three approaches suitable for different scenarios

- **Approach 1**: For homogeneous user mobility and cost functions
 - Markov decision process (MDP)
- **Approach 2**: For general but predictable mobility and costs
 - Online placement with arrivals/departures of service instances
- **Approach 3**: For scenarios allowing the buffering of user requests
 - Generalized Lyapunov optimization
MDP Approach to Service Migration

- **Objective (consider migration and data transmission costs):**

 \[
 \min_{V_\pi(s_0)} \lim_{t \to \infty} \mathbb{E}\left\{ \sum_{\tau=0}^{t} \gamma^\tau C_{a_\pi}(s(\tau)) \right\} \quad \text{subject to} \quad s(0) = s_0
 \]

- State \((u(t), h(t))\): user & service locations

- **Consider Markovian movement of users**
- **Markov decision process (MDP)**
- **The MDP can potentially have a very large state space**

\[\gamma \in (0, 1)\]
We ask ourselves…

- How to simplify the MDP (Markov Decision Process) to avoid state explosion?
- Can we approximate the original MDP with a simplified MDP? If yes, what is the approximation error?
- Can we find a closed-form solution to the discounted sum cost of an MDP?
- How to apply the theoretical model to practice?

Main contributions

- **Provable structural property**: Only migrate to a location closer to the user
- 1-D mobility with constant cost
 - Threshold policy is provably optimal
 - Modified policy iteration utilizing the existence of optimal threshold policy – more efficient than standard algorithms for solving MDPs
- 2-D mobility with constant-plus-exponential cost
 - Approximate with 1-D MDPs with provable constant approximation error
 - Closed-form solution to the discounted sum cost of the simplified MDP
 - Verified by using real-world mobility statistics
States e represent the distance between user and service locations (in terms of base stations with micro-cloud server)

Cost definition:

$$C_a(e) = \begin{cases}
0, & \text{if no migration or data transmission, i.e., } e = a(e) = 0 \\
\xi, & \text{if only data transmission, i.e., } e = a(e) \neq 0 \\
1, & \text{if only migration, i.e., } e \neq a(e) = 0 \\
\xi + 1, & \text{if both migration and data transmission, i.e., } e \neq a(e) \neq 0
\end{cases}$$

Corollary: Migrating to locations other than the current location of the mobile user is not optimal.
Proposition: There exists a threshold policy \((k_1, k_2)\), where \(M < k_1 \leq 0\) and \(0 \leq k_2 < N\), such that when \(k_1 \leq e \leq k_2\), the optimal action for state \(e\) is \(a^*(e) = \{\text{not migrate}\}\), and when \(e < k_1\) or \(e > k_2\), \(a^*(e) = \{\text{migrate}\}\).
Cost with Given Thresholds \((k_1, k_2)\)

Discounted sum cost:

\[
v_{(k_1, k_2)} = \begin{bmatrix} V(k_1 - 1) & V(k_1) & \cdots & V(0) & \cdots & V(k_2) & V(k_2 + 1) \end{bmatrix}^T
\]

One-timeslot cost:

\[
c_{(k_1, k_2)} = \begin{bmatrix} 1 & \xi & \cdots & \xi & 0 & \xi & \cdots & \xi & 1 \end{bmatrix}^T
\]

- \(-k_1\) elements
- \(k_2\) elements

Modified transition matrix:

\[
P'_{(k_1, k_2)} = \begin{bmatrix}
P_{0, k_1 - 1} & \cdots & P_{0, 0} & \cdots & P_{0, k_2 + 1} \\
P_{k_1, k_1 - 1} & \cdots & P_{k_1, 0} & \cdots & P_{k_1, k_2 + 1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
P_{0, k_1 - 1} & \cdots & P_{0, 0} & \cdots & P_{0, k_2 + 1} \\
P_{k_2, k_1 - 1} & \cdots & P_{k_2, 0} & \cdots & P_{k_2, k_2 + 1} \\
P_{0, k_1 - 1} & \cdots & P_{0, 0} & \cdots & P_{0, k_2 + 1}
\end{bmatrix}
\]

Balance equation:

\[
v_{(k_1, k_2)} = c_{(k_1, k_2)} + \gamma P'_{(k_1, k_2)} v_{(k_1, k_2)}
\]

Solving \(v\):

\[
v_{(k_1, k_2)} = (I - \gamma P'_{(k_1, k_2)})^{-1} c_{(k_1, k_2)}
\]
Modified Policy Iteration Algorithm

1. Initialize k_1 and k_2
2. Compute discounted cost vector v under given k_1 and k_2
3. Determine search direction of k_1 and k_2
4. Find new thresholds k_1 and k_2 that yield lower discounted sum cost
5. k_1 or k_2 changed?
 a. Yes
 b. No
6. Return k_1 and k_2

- The threshold-pair (k_1^*, k_2^*) is different in every iteration, otherwise the loop terminates.
- The number of iterations is $O(|M|N)$.
• **Migration cost**

\[c_m(x) = \begin{cases}
0, & \text{if } x = 0 \\
\beta_c + \beta_l \mu^x, & \text{if } x > 0
\end{cases} \]

distance between new and old service locations

• **Communication cost**

\[c_d(x) = \begin{cases}
0, & \text{if } x = 0 \\
\delta_c + \delta_l \theta^x, & \text{if } x > 0
\end{cases} \]

distance between user and service locations
Simplified MDP Formulation for 2-D Mobility

Use the distance between the user and service as states

- An example in 2-dimensional space

User location: \((a, b)\)
Service location: \((x, y)\)

Logical distance: \# of hops between \((a, b)\) and \((x, y)\)

Each state is a 4-dimensional vector.
State space can be arbitrary large.

Each state is a scalar value.
State space is normally bounded.
(Migration must happen when beyond a certain distance.)

- Exactly optimal for uniform or single-directional 1-D user mobility
What Does the Simplified MDP Bring Us

Closed-form solution to the discounted sum cost for a given service migration policy

- By solving difference equations
- Results simplify the policy search procedure
- Theoretical importance

Modified policy iteration mechanism with $O(N^2)$ complexity for each iteration
(Standard policy iteration has $O(N^3)$ complexity due to matrix inversion)

\[
V(d) = \delta_c + \delta_t \theta^d + \gamma \sum_{d_1=d-1}^{d+1} P_{dd_1} V(d_1)
\]

\[
V(d) = A_km_1^d + B_km_2^d + D + \begin{cases}
H \cdot \theta^d & \text{if } 1 - \frac{\phi_1}{\theta} - \phi_2 \theta \neq 0 \\
H_d \cdot \theta^d & \text{if } 1 - \frac{\phi_1}{\theta} - \phi_2 \theta = 0
\end{cases}
\]
Using the Distance-Based MDP for 2-D Mobility

Consider uniform random walk mobility
- Large-scale average, each user is a sample path
- User moves to one of its neighboring cells with probability r

2-D difference model for hexagon cell structure
- For distance-based model with N states, the 2-D model has $M=3N^2+3N$ states

Find the policy from the distance-based MDP, with parameters $p_0=6r$, $p=2.5r$, $q=1.5r$

Standard policy iteration: $O(N^6)$
Proposed approach: $O(N^2)$

Always migrate on shortest path
Numerical Comparison: Exact vs. Approx.

- 2-D mobility
- Solving the original 2-D model consumes about 1,000 times more computation time
- Approximation result is very close to true optimum
Apply Real-World Mobility Statistics

Estimate model parameters from the cell association history

- Define a time-window to look back
- Update migration policy at a specific interval

Only a subset of base stations have capacity-limited MMCs connected to them

- Only place on base stations with MMCs
- “Relocate” services on capacity-exceeded MMCs

Simulation used mobility traces of San Francisco taxis [1], [2] with hexagonal cell structure

Simulation Results Using SF Taxi Trace
Mobile Edge Clouds

- Important cloud architecture to shift computation to the network edge
- Efficient use of infrastructure to support mobility and network dynamics
- Potential support of time critical applications

Main contributions

- Proposed service placement solutions with provable performance
- Developed service migration algorithms using MDP and complexity reduction (2D to 1D) techniques
- Verified the proposed methods using taxi mobility statistics in San Francisco

Research approach

- Outstanding problems are very hard to solve!
- Appropriate to identify unique characteristics of scenarios of interest (e.g., hierarchical structure for micro-mobile clouds)
- Develop exact solutions for simple cases (e.g., linear application graph) and extend and approximate complicated scenarios of interest
Acknowledgments

- **Collaborators**
 - Shiqiang Wang (IBM), Murtaza Zafer (Nyansa), Rahul Uragaonkar (Amazon), Ting He (Penn State Univ.), Kevin Chan (U.S. Army)
 - Research funding: U.S./U.K. ITA Project

- **Publications**
Thank you